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1 Entanglement in Quantum Information Theory

To begin with let us try to motivate the question why is entanglement interesting and what
exactly we mean by entanglement? Classically when we consider a bipartite system they
can be completely uncorrelated if they are not interacting with each other or they can have
some correlations if they are/were causally connected at some point in time. However, when
we make a measurement on system A or system B which are casually disconnected we do
not expect their measurements to influence each other. However, we will see in the first
part of the lecture that quantum mechanics allows for much stronger correlations than any
classical theory. Historically this was first discovered by John Bell in 1964. We start with
a version of Bell’s inequality known as CHSH inequality which might be slightly different
from the way Bell himself considered it, nevertheless communicates the physics.

1.1 Bell’s inequality and Local Realism

In order to understand the implication of Bell’s inequality one needs to understand the
concept of local realism. Locality is a principle in which two causally disconnected events
can not influence each other. In other words suppose you have two physical systems which
are so far apart that even light signals can not be sent in time then the measurements can
not affect each other. Realism simply means that the measured values of a property of
a physical system objectively were so even before the measurement was made. Theories
which obey both of these two principles are called locally realistic theories.

John Bell worked made this mathematically precise by constructing certain inequalities
which any locally realistic theory must obey. We will consider related inequalities known
as CHSH (Clauser, Horne, Shimony, and Holt) inequality which goes as follows. I will be
following this pretty much as described in [1] and John Preskill’s lecture notes (In fact a
mixture of the two). Consider a hypothetical experiment in which Alice and Bob who have
shared a physical system let us say two particles A and B that were produced in some
experiment which Charlie is conducting. Charlie decided to send particle A to Alice and
particle B to Bob who are very far apart. Now Alice is free to conduct experiments to
measure two properties of A which we denote by Q and R both of which can have two
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possible measured values which we denote as Q = ±1, R = ±1. Similarly Bob also is
allowed to choose from two properties S and T which also can have two possible values each
S, T = ±1. Note that Q+R is either 0 or ±2. In either case following statement is true

QS +RS +QT −RT = (Q+R)S + (Q−R)T = ±2 (1.1)

Now supposing there is a probability assigned to a particular outcome for each property
p(q, r, s, t) then the expectation or average value of measuring this particular combination
is

|⟨QS +RS +QT −RT ⟩c| = |
∑

q,r,s,tϵ±1

p(q, r, s, t)(qs+ rs+ qt− rt)|

≤ 2
∑

q,r,s,tϵ±1

p(q, r, s, t) = 2 (1.2)

In other words

|⟨QS⟩c + ⟨RS⟩c + ⟨RT ⟩c − ⟨QT ⟩c| ≤ 2 (1.3)

Let us now consider the following quantum state |ψ−⟩ of two spin 1/2 particles prepared
by Charlie who then sends one particle to Alice and one to Bob

|ψ−⟩ = |01⟩ − |10⟩√
2

(1.4)

In this case we consider the properties we measure to be spin along different directions

Q = σ⃗A.q̂ S = σ⃗B.ŝ

R = σ⃗A.r̂ T = σ⃗B.t̂.
(1.5)

In the above equation, the superscript denotes on which particle the operator acts and σ⃗

denotes the following

σ⃗ = σxx̂+ σyŷ + σz ẑ (1.6)

Now for Bell state |ψ−⟩ it is easy to check that〈
ψ−
∣∣∣(−→σ (A) · â

)(−→σ (B) · b̂
)∣∣∣ψ−

〉
= −â · b̂ = − cos θ (1.7)

You can choose q̂, ŝ, r̂, t̂ to be any co-planar directions separated by 450. For example choose

q̂ = x̂ ŝ =
x̂+ ẑ√

2
(1.8)

r̂ = ẑ t̂ =
−x̂+ ẑ√

2
. (1.9)

Substituting these in eq.(1.7) we get

⟨QS⟩ = ⟨RS⟩ = ⟨RT ⟩ = − cos
π

4
= − 1√

2
, (1.10)

⟨QT ⟩ = − cos
3π

4
=

1√
2

(1.11)
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Hence we have

|⟨QS⟩Bell + ⟨RS⟩Bell + ⟨RT ⟩Bell − ⟨QT ⟩Bell| = 2
√
2 (1.12)

which clearly proves that the Bell state violates Bell’s inequality which is based on the
assumption of local realism. So either locality or realism is in trouble. In quantum field
theory locality is crucial so henceforth for the purpose of these lectures we can give up on
realism!

1.2 Definition

Consider a quantum system which is divided into two subsystems A and B. A given
quantum state |ψ⟩AB of this composite system is said to be an entangled state if it can not
be expressed as the tensor product of the states of the subsystems

|ψ⟩entAB ̸= |ψ1⟩A ⊗ |ψ2⟩B (1.13)

where as if one can do so then the state is said to be separable state. Let us demonstrate
this with an example. Consider AB to be a composite system of two spin-12 systems. The
state of A and B are given by

|ψ1⟩A = α1 |1⟩+ β1 |0⟩ (1.14)

|ψ2⟩B = α2 |1⟩+ β2 |0⟩ (1.15)

such that |αi|2 + |βi|2 = 1. Therefore any separable state that can be constructed has to
have the following form

|ψ⟩sepAB = α1α2 |11⟩+ β1α2 |01⟩+ α1β2 |10⟩+ β1β2 |00⟩ (1.16)

Now consider the quantum state (This is known as the Bell’s state. We will know why in
some time! )

|ψ̃⟩AB = a |11⟩+ b |00⟩ (1.17)

Comparing eq.(1.16) and eq.(1.17) we see that there exist no α1,α2,β1 and β2 that can
give us this state for non-zero a and b

α1α2 = a, β1β2 = b, α1β2 = 0 and β1α2 = 0 (1.18)

Therefore the state mentioned in eq.(1.17) is an example of an entangled state. Instead
of constructing Bell type inequalities one would like to have a general measure which will
simply tell us the amount of entanglement present. This is where we will see that a quantity
known as the entanglement measures becomes important.

1.3 Pure and mixed states

The maximum knowledge one can have in a quantum world is the quantum state or the
wave function. If the exact quantum state of a given system is known then the system is
said to be in a pure state. The density matrix for such a pure state is given by
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ρ̂ = |ψ⟩ ⟨ψ| (1.19)

Therefore for a pure state Tr(ρ)=1 and the density matrix is the idempotent ρ̂2 = ρ̂.
The von-Neumann entropy for such a state is zero.

S = −Tr(ρ log ρ) = −
∑
i

ρi log ρi = 0 (1.20)

where ρis are the eigen values of the density matrix.
The mixed state as the name suggests is a mixture of several pure states with some

weights and therefore has some classical probabilities along with the quantum uncertainity.
It has the following form

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| (1.21)

where pi’s are the classical probablities and |ψi⟩s are the pure states. For a mixed state
Tr(ρ2) < 1. Example: Suppose we know that a state of spin-12 particle is prepared in a lab
such that there is 50% probability that it is in the state |ψ1⟩ = 1√

2
|0⟩ + 1√

2
|1⟩ and 50%

probability that it is in the state |ψ2⟩ = |1⟩. Then the density matrix is given by

ρ̂ =
1

2
|ψ1⟩ ⟨ψ1|+

1

2
|ψ2⟩ ⟨ψ2| (1.22)

1.4 Schmidt decomposition and reduced density matrix

Any quantum state of a bi-partite system whose Hilbert state is factorized HA ⊗HB may
be written as

|ψ⟩ =
∑
jk

ajk |j⟩A |k⟩B (1.23)

According to the singular value decomposition theorem, any complex matrix can be
decomposed into a product of diagonal matrix sandwitched between two unitary matrices

ajk =
∑
ijk

ujidiivik (1.24)

Using this theorem one may always go into a basis where

|ψ⟩AB =
∑
i

λi |i⟩A |i⟩B (1.25)

where |i⟩A =
∑

j uji |j⟩A, |i⟩B =
∑

k vik |k⟩B and dii = λi. This simplification for the
bipartite quantum systems is known as the Schmidt decomposition.
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1.5 Reduced density matrix

Suppose there is an observer who has access to only one of the subsystems say A, then
his/her state is described by the reduced density matrix denoted as ρA which is obtained
by tracing over the degrees of freedom of B

ρA = TrB(ρ̂AB) (1.26)

where ρ̂AB is the density matrix for the bi-partite system AB.
Using eq.(1.25), it is easy to see that for a pure state

ρA =
∑
k

⟨k| ρ̂ |k⟩B =
∑
i

λ2i |i⟩A ⟨i| (1.27)

Therefore the reduced density matrix is diagonal in the Schmidt basis and the eigen values
of the ρA are given by |λi|2. Similarly it can be shown that ρB also has the same eigen
values. The expectation value of an operator O = OA ⊗ I is given by

⟨ψ|O |ψ⟩ =
∑
i

|λi|2 ⟨i|OA |i⟩A (1.28)

= Tr(ρAOA) (1.29)

1.6 Entanglement entropy

For a bi-partite system in a pure state the amount of quantum entanglement can be quan-
tified through a measure known as entanglement entropy denoted by SA defined as the
von-Neumann entropy of the reduced density matrix

SA = −Tr(ρA log(ρA)) (1.30)

Example: Consider the state

|ψ⟩ = cos(θ) |10⟩+ sin(θ) |01⟩ (1.31)

The reduced density matrix for the first particle which we are calling A is given by

SA = −2cos2(θ) log (cos(θ))− 2sin2(θ) log (sin(θ)) (1.32)

Therefore we see that entanglement entropy is non-zero as long as cos(θ) ̸= 0 or sin(θ) ̸= 0

and it takes the maximum value at θ = π
4 (SmaxA = log 2) which is precisely the max-

imally entangled Bell state indicating that entanglement entropy is indeed a measure of
entanglement for pure states.

1.7 Properties of entanglement entropy

1.7.1 Sub-additivity and mutual information

For a composite system A ∪B the following inequality
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SA + SB ≥ SAB (1.33)

is known as the subadditivity property of the entanglement entropy. When the full system
A ∪ B is in a pure state it is easy to see that the inequality is satisfied as SAB = 0 and
SA = SB. The difference between the L.H.S and the R.H.S of this inequality is a very
important quantity known as the mutual information.

I(A : B) = SA + SB − SAB (1.34)

Mutual information is a measure of the total amount of correlations between A and B and
therefore is a bound on the quantum entanglement between A and B. The subadditivity
property can therefore be recast as I(A : B) ≥ 0. When the full system is in a pure state
SA = SB (This is because ρA and ρB both have the same eigen values when A ∪ B is in a
pure state) and SAB = 0 therefore the inequality is trivially satisfied. For a given system
the mutual information for an entangled state is always much larger than for any separable
state.

1.7.2 Strong subadditivity

Another inequality that is obeyed by the entanglement entropies of different subsystems of
a composite tripartite quantum system is known as the strong subadditivity property given
by

SAB + SBC ≥ SABC + SB (1.35)

This inequality can also be recast in terms of the mutual informations as

I(A : BC) ≥ I(A : B) (1.36)

which essentially says that the amount of correlation of the subsystem A with the subsystem
B ∪ C will always be greater than that between A and B.

1.8 Renyi entropy

Renyi entropy of order ’n’ is defined as follows

SnA =
ln[Tr((ρA)n]

1− n
(1.37)

Where n ∈ Z. This quantity reduces to entanglement entropy in limit n→ 1.

SA = lim
n→1

SnA (1.38)

= − lim
n→1

∂

∂n
ln[Tr((ρA)

n] (1.39)

= −Tr(ρA log ρA) (1.40)

Note that in order to take the limit in the last line it is required to analytically continue n
through non-integer values. This analytic continuation is highly non-trivial has been proven
to exist only for some handful of examples. We will see that this quantity is much more
useful in computation of entanglement entropy in quantum field theory. Most of the topics
covered in this section are from [1].
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1.9 Basic Properties of Entanglement Measures

Following are some properties any entanglement measure has to satisfy

• Separable states contain no entanglement.. A state ρAB is said to be separable if and
only if

ρAB =
∑
i

piρ
i
A ⊗ ρiB (1.41)

By definition separable state contains no entanglement and hence

EρAB (A : B) = 0 (1.42)

• All non-separable states allow some tasks to be achieved better than by LOCC alone,
hence all non- separable states are entangled.

• The entanglement of states does not increase under LOCC transformations. Any local
operations done on A or B whether unitary or not can not increase the entanglement.
A measure obeying this property is referred to as an entanglement montone under
LOCC. Supposing you started with a state ρ of the full system which after LOCC
goes to the state ρi with a classical probability pi then

Eρ(A : B) ≥
∑
i

piEρ′i (A : B) (1.43)

• Entanglement does not change under Local Unitary operations.

Eρ(A : B) = Eρ′i (A : B) ρ′ = UA ⊗ UB ρ (UA ⊗ UB)
† (1.44)

• An entanglement measure is expected to obey monogamy. An entanglement measure
is expected to obey the following (stronger) version of monogamy which is as follows

E(A : BC) ≥ E(A : B) + E(A : C) (1.45)

A correlation measure such as the mutual information on the other hand is expected
to obey a weaker version of monogamy which is as follows

E(A : BC) ≥ E(A : B) (1.46)

2 Mixed state and multipartite entanglement measures

Having discussed the information theoretic properties and significance of entanglement en-
tropy in the previous lecture we now describe some other measures which characterize
quantum correlations that are not directly available to entanglement entropy. We will
restrict ourselves to two such measures which are computable in QFTs/CFTs.
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2.1 Entanglement Negativity

Entanglement entropy is a valid entanglement measure for bi-partite systems in pure states
only i.e ρAB = |ψ⟩⟨ψ|. However for a generic mixed states where ρAB is mixed state
one has to resort to other measures. One such computable measure is what is known as
entanglement negativity. The definition of this measure proposed by Vidal and Werner [2]
which was shown to be convex entanglement montone by [3] depends crucially on a criterion
proposed by Asher Peres which we describe below.

2.1.1 Partial Transpose and Peres’ PPT criterion

In order to understand Peres PPT criterion one first needs to define the operation of partial
transpose which is as follows

⟨qAi qBj | ρTBA∪B | qAk qBl ⟩ = ⟨qAi qBl | ρA∪B | qAk qBj ⟩

where qA, B are the basis states of the subsystems A and B respectively

• A separable mixed state was defined in the previous lecture has the following form

ρAB =
∑
i

piρ
i
A ⊗ ρiB (2.1)

• Peres-Horodecki PPT criterion: is a necessary condition for the separability of a state.
It states that for a separable state the eigen values remain positive under the operation
of partial transpose (T2) over one of the subsystems. This can be easily seen from
the above equation the partial transpose simply acts as a transpose on ρiB therefore
leaving the eigen values invariant

• Quite interestingly the converse turns out be not true. A separable state is PPT but
not all PPT states are separable. In other words it is a sufficient condition only for
2× 2 and 2× 3. Because negativity is based on this criterion it leaves out a class of
entangled states referred to as ”bound entangled states“.

• Entanglement Negativity is defined as the trace norm of the partially transposed re-
duced density matrix of the bipartite system A ∪B

E = log ||ρTBA∪B||.

• It is related to the absolute sum of the negative eigen values and therefore a measure
of the extent to which PPT criterion is violated.

||ρTBA∪B|| =
∑
i

|λi| = 1 + 2
∑
λi<0

|λi|

• In quantum information literature E is referred to as the log negativity whereas the
absolute sum of the negative eigen values is referred to as negativity

N =
∑
λi<0

|λi| =
1

2
(||ρTBA∪B|| − 1)

E = log[1 + 2N ] (2.2)
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2.1.2 Properties and Examples

• A computable measure that provides the upper bound on the distillable entanglement
which referes to the amount of Bell pairs you can extract from the state using only
LOCC.

• It is an entanglement monotone i.e it does not increase under LOCC.

• Example: Let us take the |GHZ⟩ and |W ⟩ state defined as

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩)

E(A : B) = E(B : C) = E(C : A) = 0

where as

|W ⟩ = 1√
3
(|100⟩+ |010⟩+ |001⟩)

E(A : B) = E(B : C) = E(C : A) = 0.34

2.2 Reflected Entropy and Entanglement of Purification

2.2.1 Purification

In order to understand the measures such as the reflected entropy and the entanglement of
purification we must first understand the process of purification of a mixed state. Given a
mixed state, process of purification involves constructing a pure state in a bigger Hilbert
space such that after tracing over one of the subsystem leads to the reduced density matrix
matches exactly with the mixed state in question.

ρAB = TrC

(
|ψ⟩ABC⟨ψ|

)
= ρmixedAB (2.3)

where ρmixedAB is the mixed state in the Hilbert space HA⊗HB and |ψ⟩ABC is the pure state
in the bigger Hilbert space HA ⊗HB ⊗HC

The best example to get an intuition of the purification process is to consider the
thermal state. Thermal state ρβ = e−βH/Z is a mixed quantum state it can be easily
checked that

Tr(ρ2β) =
1

Z2

∑
n

⟨n|e−2βH |n⟩ = 1

Z2

∑
n

e−2βEn

=
∑
n

p2n < 1 (2.4)

where Z = Tr(ρβ) and pn = e−βEn/Z is simply the probability of the system to be in
energy eigenstate En. The thermal state ρβ can be purified by doubling the Hilbert space
through what is known as the thermofield double state which is

|ψ⟩TFD =
1

Z

∑
n

e−
βEn
2 |n⟩L|n⟩R (2.5)

– 9 –



It can be easily checked that tracing over either left or right part leads to the reduced
density matrix given by the thermal state

ρL = TrR(|ψ⟩⟨ψ|) = ρβ

ρR = TrL(|ψ⟩⟨ψ|) = ρβ (2.6)

The above process of doubling the Hilbert space to purify can be performed on any mixed
state not just on thermal state. For a generic mixed state the process is called canonical
purification. Note that the process of purification is not unique in other words a given
mixed state can have many possible purifications. Definition of reflected entropy is based
on the canonical purification which is as follows

2.2.2 Canonical Purification

Definition

To begin with let us consider the mixed state ρAB. From quantum information theory
we know that any mixed state could be expressed as a mixture orthonormal pure states
ρ
(a)
AB = |ϕa⟩ ⟨ϕa| as follows

ρAB =
∑
a

paρ
(a)
AB

=
∑
a

pa |ϕa⟩ ⟨ϕa|

where pa’s are some classical probabilities such that
∑

a pa = 1and |ϕa⟩’s correspond to
orthonormal pure states. Each of these states |ϕa⟩ can be expressed in the Schmidt basis
as follows

|ϕa⟩ =
∑
i

√
lia |ia⟩A |ia⟩B

where la are the eigen values, |ia⟩A and |ia⟩B are basis states of Hilbert spaces of A and B.
This implies that

ρAB =
∑
a,i,j

pa

√
lial

j
a |ia⟩A |ia⟩B ⟨ja|A ⟨ja|B

The canonical purification for this mixed state is as follows

|√ρAB⟩ :=
∑
a,i,j

√
palial

j
a |ia⟩A |ia⟩B |ja⟩A⋆ |ja⟩B⋆

It can be easily shown that tracing out A∗ and B∗ leads to the mixed state ρAB we started
with

ρABA∗B∗ = |√ρAB⟩⟨
√
ρAB|

TrA∗B∗(ρABA∗B∗) = TrA∗B∗(|√ρAB⟩⟨
√
ρAB|)

= ρAB
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where we have used
∑

j l
j
a = Tr(|ϕa⟩⟨ϕa|) = 1. This proves that |√ρAB⟩ is a purification of

the mixed state ρAB.
The reflected entropy is defined as the Von-Neumann entropy of the subsystem AA∗ of

the canonically purified state |√ρAB⟩

SR(A : B) := S(AA∗) = −TrAA∗ [ρAA⋆ log ρAA⋆ ]

ρAA∗ := TrBB∗ |√ρAB⟩⟨
√
ρAB|

Figure 1: Reflected entropy of a bipartite system A ∪B

Quite interestingly this quantity was discovered not by quantum information theorists
but by holographers!! The details can be found in [4] . We will be covering some of it in
the present lectures.

Properties of Reflected Entropy

• Following equalities hold because A∗B∗ is a copy of AB and |√ρAB⟩ is pure

S(A) = S(A∗), S(B) = S(B∗) and S(AA∗) = S(BB∗)

• When ρAB is a pure state

ρAB = |ψ⟩⟨ψ| =⇒ SR(A : B) = 2S(A) = 2S(B)

This is because it can be easily shown using the basis described above that for a pure
state ρAA∗ = ρA ⊗ ρA.

• Vanishes for a tensor product state

ρAB = ρA ⊗ ρB =⇒ SR(A : B) = 0

This is because in this case ρAA∗BB∗ = ρAA∗ ⊗ ρBB∗ and |√ρAB⟩ = |√ρA⟩ ⊗ |√ρB⟩
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• However for a separable mixed state

ρAB =
∑
k

pkρ
k
A ⊗ ρkB

SR(A : B) = −
∑
k

pk log pk

Hence not a measure of mixed state entanglement and contains classical correlations.
In contrast negativity which is measure of mixed state entanglement vanishes for such
separable states.

• Bounded by Mutual Information. Start with strong subadditivity relation for AA∗B

given by

S (AA⋆)− S (A⋆) + S(AB)− S(B) ≥ 0

=⇒ SR(A : B) ≥ I(A : B)

• Bounded from below by

I (A : A⋆) = 2S(A)− S (AA⋆) ≥ 0

I (B : B⋆) = 2S(B)− S (AA⋆) ≥ 0

=⇒ SR(A : B) ≤ 2min{S(A), S(B)}

• They attempted to prove monogamy. However could not prove

SR(A : BC) ≥ SR(A : B)

For holographic states they were able to prove the above statement however for generic
qubit states some are counter example states have been found recently [5].

2.3 Markov Gap

The importance of the Markov gap for reflected entropy as a measure of multipartite en-
tanglement was analised in [6–8]

• Supposing there is a tripartite system ABC in some quantum state ρABC . You know
the reduced density matrix ρAB and you have access to only the B subsystem.

• Markov recovery process is about how accurately one can reconstruct the state ρABC
by operating say on B alone via a quantum map RB→BC .

ρ̃ABC = RB→BC (ρAB)

• If R perfectly reproduces the original state ρABC then it is called a quantum Markov
map.

ρ̃ABC = ρABC
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• However it was proven that

max
RB→BC

F (ρABC , ρ̃ABC) ≥ e−I(A:C|B)

where F (ρ, σ) = [Tr
√√

ρσ
√
ρ]2 is the Fidelity which measures how close the original

state is to the recovered state and I(A : C | B) = S(AB)+S(BC)−S(ABC)−S(C) is
the condition mutual information and it measures the strong subadditivity inequality.

• This seems like a bound on the maximum Fidelity one can obtain by performing an
operation on subsystem B in terms of the conditional mutual information but one
can reverse this relation to obtain

I(A : C | B) ≥ − max
RB→BC

logF (ρABC ,RB→BC (ρAB))

In other words the above inequality gives the state dependent enhancement of strong
subadditivity. As long as the Fidelity is not unity the above inequality implies that
the strong subadditivity is bounded away from zero.

2.3.1 Markov Gap of Reflected Entropy

• Let us now consider the difference between the reflected entropy and mutual informa-
tion

SR(A : B)− I(A : B) = I (A : B∗ | B) = I (B : A∗ | A)

• The above described theorem implies a stronger equality than SR(A : B) ≥ I(A : B)

which was proven earlier

SR(A : B)− I(A : B) ≥ − max
RB→BB∗

logF (ρABB∗ ,RB→BB∗ (ρAB))

SR(A : B)− I(A : B) ≥ − max
RA→AA∗

logF (ρAA∗B,RA→AA∗ (ρAB))

2.3.2 Markov gap and multipartite entanglement

• Multipartite entanglement is subtle and interesting.

• Simplest examples are the tripartite entangled states: W-state and GHZ. Entangle-
ment structure of W-state is very different from the GHZ state

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩)

|W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩)

• The entanglement structure of GHZ is entirely tripartite i.e if you trace over one of
the qubit there is no entanglement between the remaining subsystems. However, the
W-state has some entanglement even after we trace over one of the qubit.
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• consider the state |Wϵ⟩ defined as

|Wϵ⟩ = ϵ|100⟩+ ϵ|001⟩+
√
1− 2ϵ2|010⟩

which goes from a pure product state ϵ = 0 to W state for ϵ = 1√
3
= 0.577 to another

unentangled state for ϵ = 1√
2
= 0.707

• As can be seen from the graph below the Markov gap for canonical purification com-
puted from reflected entropy goes to maximum as one reaches the |W⟩ state where as
for GHZ state the Markov gap simply vanishes

Figure 2: Markov gap for canonical purification of the subsystem AB obtained from |Wϵ⟩.
Picture from [9]

• Hence, the expectation was that the existence of Markov gap points towards the
presence of the multipartite W -type entanglement in the system. This has now been
proven to be true in [8].

3 Entanglement Entropy in Quantum Field Theories

3.1 Density matrix in the pathintegral formalism

The groundstate wavefunction of a non-relativistic quantum particle is defined in
the Euclidean path integral formalism by integrating over all possible paths from
tE = −∞

ψ0(x) = N
∫ x(tE=0)

x(tE=−∞)
Dx e−S[x] (3.1)

The reason for this is as follows. Consider the transition amplitude of a particle from
an initial point (xi, ti) to a final point(xf , tf )
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⟨xf , tf |xi, ti⟩ =
∫ x(tf )

x(ti)
Dx eiS[x],

⟨xf |eiH(tf−ti)|xi⟩ =
∫ x(tf )

x(ti)
Dx eiS[x]

Performing a wick rotation t→ itE and choosing the initial and final positions to be
x(tE = −τ) and x(tE = 0) respectively and then inserting a complete set of states we
get ∑

n

⟨xf |e−H(τ)| |n⟩ ⟨n| |xi⟩ =
∫ x(tE=0)

x(tE=−τ)
Dx e−SE [x] (3.2)

As τ → ∞ or tE → −∞ one can see from the L.H.S of the above equation that the
only contribution comes from the ground state therefore we have

e−E0(τ)⟨xf |0⟩ ⟨0|xi⟩ =
∫ x(tE=0)

x(tE=−∞)
Dxe−SE [x]

ψ0(x) =
eE0(τ)

⟨0|xi⟩

∫ x(tE=0)

x(tE=−∞)
Dxe−SE [x]

This implies that upto a normalization factor the ground state wave function is indeed
given by eq.(3.1). The analogue of this in relativistic quantum field theory is the
vacuum wave functional which is obtained by integrating over all field configurations
in the lower half of the Euclidean plane given by

Ψ0[ϕ] = N
∫ ϕ(x),tE=0

tE=−∞
[Dϕ] e−SE [ϕ(x)] (3.3)

Similarly the conjugate wave functional is defined by integrating over all the field
configurations on the upper half plane

Ψ∗
0[ϕ] = N

∫ tE=∞

ϕ(x),tE=0

[Dϕ] e−SE [ϕ(x)] (3.4)

Therefore the matrix element of the density operator is obtained by integrating over
the full Euclidean space with the boundary conditions provided at ϕ(x, 0−) = ϕ−(x)

and ϕ(x, 0+) = ϕ+(x)

ρϕ−ϕ+ =
1

Z

∫ tE=∞

tE=−∞
[Dϕ] e−SE [ϕ(x)]

∏
x

δ(ϕ(0+, x) = ϕ+(x)) δ(ϕ(0−, x) = ϕ−(x))

(3.5)
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Figure 3: Picture from [10]

The factor Z is introduced to ensure that Tr(ρ) = 1 and it is equal to the Vacuum
partition function. Suppose we divide the full system into subsystem-A(which we
choose to be an interval [u, v] and the rest of the system is denoted as B. The
reduced density matrix of a subsystem A is then obtained by taking a partial trace
which for this case implies that one has to identify ϕ+(x) = ϕ−(x) for x ∈ B and
integrating over ϕ+

[ρA]ϕ−ϕ+ =
1

Z1

∫ tE=∞

tE=−∞
[Dϕ] e−SE [ϕ(x)]

∏
x∈A

δ(ϕ(0+, x) = ϕ+(x)) δ(ϕ(0−, x) = ϕ−(x))

One can see from above equation that obtaining the entanglement entropy using
SA = −Tr(ρA log ρA) is extremely difficult for a quantum field theory as it involves
the evaluation of logarithm of the above mentioned reduced density matrix. However
for a (1+1) dimensional quantum field theory with conformal symmetry one can to
resort to a technique known as the replica technique which was developed by Cardy
et. al in [11, 12].

3.2 The replica technique

The replica technique as the name suggests involves the replication of n-copies of the
theory and evaluation of the entanglement entropy through the Renyi entropy in the
n → 1 limit (known as the replica limit). The trace of ρnA is found by preparing
n copies, making the identification ϕi+(x) = ϕ

(i+1)
− (x) and integrating over these

variables
TrA(ρ

n
A) =

1

Zn1

∫
(x,tE)∈R

[Dϕ] e−SE [ϕ(x)] =
Zn(A)

Zn1
(3.6)

where Zn(A) is now the partition function on the n-sheeted Riemann surface. This
complicated path integral on the Riemann surface can be mapped to a multi-copy
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Figure 4: Picture from [13]

model on the complex plane provided the boundary conditions ϕi+(x) = ϕ
(i+1)
− (x)

are satisfied i.e for every field ϕ there will be n-fields (ϕ1, ϕ2...ϕn) which obey these
conditions (here the superscripts i and (i+ 1) indicate the fields on ith and (i+ 1)th

Riemann sheet respectively).

Zn(A) =

∫
C
[dϕ1dϕ2....dϕn] exp[−

∫
dxdtE [L(1) + L(2) + .....+ L(n)] (3.7)

This path integral is restricted by the above mentioned boundary conditions and these
conditions are imposed by the local fields called the branch point twist fields placed
at the end point of the subsystemA. The operations of these twist and anti twist

fields are defined as follows

Tn(u) : ϕ(i)(x) → ϕ(i+1)(x) for x > u

T̄n(v) : ϕ(i)(x) → ϕ(i−1)(x) for x > v

where the index i has to be understood as imod n. Therefore, any correlation function
between the fields on the Riemann surface is equal to the correlation function of the
replicated fields along with the branch point twist fields on the complex plane

〈
O(x, tE : ithsheet)...

〉
LR

=

〈
Tn(u)T̄n(v)Oi(x, tE)...

〉
L(n)
c〈

Tn(u)T̄n(v)
〉
L(n)
c

(3.8)

This leads us to a relation between the partition function on the n- sheeted Riemann
surface and the two point correlation function of the twist and the anti-twist fields
given by

Zn(A) ∝
〈
Tn(u)T̄n(v)

〉
L(n)
c

(3.9)
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This may be generalized to a scenario where the subsystem-A involves union N -
disjoint intervals ∪[ui, vi] (i = 1, 2...N) as follows

Zn(A) ∝
〈
Tn(u1)T̄n(v1)Tn(u2)T̄n(v2).....Tn(uN )T̄n(vN ) >L(n)

c
(3.10)

3.3 Twist operators

Consider the conformal map z = (w−uw−v )
1
n that maps the w-coordinates on the n-

sheeted Riemann surface to the z-coordinates on the complex plane. Under this map
stress energy tensor T (w) transforms in the following way

T (w) =
dz

dw
T (z) +

c

12
{z, w} (3.11)

We will use this transformation to argue that the twist operators are the primary
operators of the conformal field theory and determine the scaling dimension. Taking
the expectation value on both sides and using the fact that on the complex plane〈
T (z)

〉
C = 0 (because of the translational and rotational invariance) we get

〈
T (w)

〉
R =

c

24

(1− 1
n2 )(v − u)2

(w − u)2(w − v)2
(3.12)

One can now use the conformal Ward identity to argue that the above function has
the expected form in (3.8)

〈
T (w)

〉
R =

〈
Tn(u)T̄n(v)Ti(z)

〉
c〈

Tn(u)T̄n(v)
〉
c

(3.13)

only if the twist and the anti-twist operators assumed to be the primary operators of
the scaling dimension given by

∆n =
c

12
(n− 1

n
) (3.14)

This is because the conformal ward identity is given by

〈
Tn(u)T̄n(v)T (z)

〉
c =

(
1

w − u

∂

∂u
+

1

w − v

∂

∂v
+

hn
(w − u)2

+
hn

(w − v)2

)〈
Tn(u)T̄n(v)

〉
c

Since the form of the two point correlation function of the primary operators in a
CFT is fixed to be 〈

Tn(u)T̄n(v)
〉
c =

cn
|u− v|2∆n

(3.15)

one gets eq.(3.13) if we assume the scaling dimension to be that given in eq.(3.14).
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3.4 EE of a single interval in CFT1+1

3.4.1 Vacuum state

Finally we have all the ingredients required to evaluate the EE of a (1+1) dimensional
conformal field theory . From eq.(3.9) and eq.(3.6) we already know that

Tr(ρnA) =
〈
Tn(u)T̄n(v)

〉
c =

cn
|u− v|2∆n

(3.16)

Therefore from the definition of Renyi entropy in section 1.6 and eq.(3.16) entangle-
ment entropy may obtained in the replica limit from the two point correlation function
of the twist and the anti-twist operators

SA = lim
n→1

∂

∂n
ln[
〈
Tn(u)T̄n(v)

〉
c] (3.17)

=
c

3
log[

l

a
] + c1 (3.18)

where ℓ = |u− v| is the length of the subsystem-A, c1 is a constant and a-is the UV
cut-off of the field theory introduced to make the quantity inside the log dimension
less as it is the only other dimension-full parameter in the theory.

3.4.2 Finite temperature case

The finite temperature EE of the single interval may be obtained by using the con-
formal map from the complex plane to cylinder (w = β

2π log[z]) as the two point
correlation function transforms in the following way

〈
Tn(w1)T̄n(w2)

〉
β
=

4∏
i=1

| dzi
dwi

|∆i
n
〈
Tn(z1)T̄n(z2)

〉
C (3.19)

which leads to following expression for entanglement entropy

SA =
c

3
log
[ β
πa

sinh (
πℓ

β
)
]
+ c′1 (3.20)

Note that unlike the Vacuum case where the full system was in a pure state the finite
temperature state is an example of a mixed state. As a result entanglement entropy
contains contribution from both the thermal and quantum correlations. In fact at
high temperature all the quantum correlations disappear. This may be observed by
taking the β → 0 limit in the above equation

SA → πcℓ

3β
(3.21)

and therefore receives a dominant contribution from the thermal entropy of the
subsystem-A as the thermal entropy density of a CFT1+1 is s = πc

3β .
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4 Entanglement Negativity in Quantum Field Theories

In this section we briefly review the computation of the entanglement negativity for
mixed states described by two different configurations in a CFT1+1 relevant for our
purpose. In this context we first introduce the definition of entanglement negativity in
quantum information theory as proposed in [2] which was shown to be an entanglement
monotone in [3]. The authors there considered a tripartite system in a pure state
consisting of subsystems that are denoted as A1, A2 (such that A1 ∪ A2 = A) and
Ac describing the rest of the system. The entanglement negativity characterizing the
upper bound on the distillable entanglement between the subsystems A1 and A2 is
defined as follows

E = logTr|(ρT2A )| (4.1)

where the ρA is the reduced density matrix of the subsystem A = A1 ∪ A2 and the
superscript T2 indicates the operation of partial transpose which is defined as follows

⟨e(1)i e
(2)
j |ρT2 |e(1)k e

(2)
l ⟩ = ⟨e(1)i e

(2)
l |ρ|e(1)k e

(2)
j ⟩. (4.2)

Here |e(1)i ⟩ and |e(2)j ⟩ represent the basis states of the subsystems A1 and A2 respec-
tively.

As discussed in the introduction, Calabrese et al. in [14? , 15] developed a replica
technique to compute the entanglement negativity for various pure and mixed state
configurations in a CFT1+1. The first configuration depicted in fig.(5) involves the
subsystems A1 and A2 corresponding to two disjoint finite intervals denoted as[u1, v1]
and [u2, v2] respectively and Ac describes the rest of the system. The replica definition
of the entanglement negativity between the subsystems A1 and A2 is given as follows

E = lim
ne→1

log Tr(ρTBAB)
ne . (4.3)

Here ne denotes that the parity of the replica index n is even. Note that this is
because the definition of entanglement negativity given in eq.(4.1) matches with the
above definition only if we assume the even parity of n that is n = ne and then finally
take the limit ne → 1. Therefore the authors proposed the replica definition for the
entanglement negativity as an analytic continuation of even sequences of n to ne = 1.

4.1 Pure state

For a pure state entanglement negativity is given by Renyi entropy of order half. The
proof is as follows

|Ψ⟩ =
∑
j

cj

∣∣∣e(A)j e
(B)
j

〉
(4.4)

The density matrix is therefore given by

ρAB =
∑
j,k

cjck|e
(A)
j e

(B)
j ⟩⟨e(A)k e

(B)
k |, ρB = TrA(ρ) =

∑
j

c2ke
(B)
k ⟩⟨e(B)

k | (4.5)
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Hence

ρTBAB =
∑
j,k

cjck|e
(A)
j eBk ⟩⟨e

(A)
k e

(B)
j | (4.6)

This leads to

(ρTBAB)
n = {

∑
j,k c

no
j c

no
k e

(B)
k e

(A)
j ⟩⟨e(B)

j e
(A)
k |, n = no odd∑

j,k c
nc
j c

ne
k e

(B)
k e

(A)
j ⟩⟨e(B)

k e
(A)
j |, n = ne even

. (4.7)

Which in turn leads to

Tr
(
ρTBAB

)n
=


∑

r c
2no
r = Tr ρno

A

[
∑

r c
ne
r ]2 =

(
Tr ρ

ne/2
A

)2 (4.8)

Hence we have

E = S
(1/2)
A = 2 log[Tr(ρ

1/2
A )] (4.9)

4.2 Mixed state

The authors demonstrated that the quantity Tr(ρT2A )ne in eq.(4.3) is given by the
following four point twist correlator

Tr(ρTBAB)
ne = ⟨Tne(u1)T ne(v1)T ne(u2)Tne(v2)⟩C. (4.10)

where T and T are the twist and the anti-twist operators both of which have the
scaling dimensions ∆ne =

c
24(ne −

1
ne
).

A

u1

B

v1 u2 v2

Figure 5: Schematic of the configuration of the mixed state of two disjoint intervals A1

and A2

Note that the four point correlator in a CFT1+1 can only be fixed upto a function of
the cross ratio

[
x = (u1−v1)(u2−v2)

(u1−u2)(v1−v2)
]
, which depends on the full operator content of the

theory. However, in the limit of adjacent intervals described as v1 → u2 as depicted
in fig.(6), the four point twist correlator in eq.(4.10) reduces to the following three
point twist correlator as follows

Tr(ρT2A )ne = ⟨Tne(u1)T
2
ne
(u2)Tne(v2)⟩C. (4.11)

where T 2
ne
(u2) corresponds to the twist operator which connects jth-sheet of the

Riemann surface to (j − 2)th-sheet and has the following scaling dimension

∆(2)
ne

= 2∆ne
2
=

c

12
(
ne
2

− 2

ne
.) (4.12)
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A

u1

B

u2 u2 v2

Figure 6: Schematic of the configuration in the limit the two intervals A1 and A2 become
adjacent

The form of the three point function may be completely determined by the confor-
mal symmetry up to a numerical constant ( which also depends on the full operator
content) and leads to the following expression for the entanglement negativity [14? ]
of the mixed state in the CFT1+1 at zero temperature.

E =
c

4
log[

l1l2
(l1 + l2)a

] + constant (4.13)

where l1 and l2 are the lengths of the two intervals, c is the central charge of the
CFT1+1 and a is the UV cut-off for the CFT1+1.

Subsequently the authors addressed the case of a bipartite system in a pure state,
described by a single interval in a zero temperature CFT1+1. The entanglement
negativity for this configuration is obtained by taking the bipartite limit defined by
u2 → v1 and v2 → u1 (that is (A,B, (AB)c) → (A,Ac, �0)) in the four point function
given by eq.(4.10) which leads to the following expression

Tr(ρT2A )ne = ⟨T 2
ne
(u)T 2

ne
(v)⟩C (4.14)

where u1 = v2 is denoted as u and v2 = u1 is denoted as v. Since the form of the
two point correlation function is fixed completely by the conformal symmetry, the
entanglement negativity may be easily computed using eq.(4.3) as1

E =
c

2
log

(
l

a

)
+ constant, (4.15)

where c is the central charge, ℓ = |u − v| is the length of the subsystem-A and a

represents the UV cut-off of the field theory. Interestingly this limit leads to the
expected result from quantum information that for a pure state the entanglement
negativity is Renyi entropy of order-12 .

Although the above procedure works for the pure vacuum state of the CFT1+1,
eq.(4.14) is not applicable to the finite temperature mixed state where the CFT1+1

is defined on an infinite cylinder [15]. For the latter case the bipartite limit is more
subtle and involves the full tripartite system. This configuration involves the sub-
systems A,B1, B2 described by the intervals A = [u2, v2] of length ℓ, B1 = [u1, v1]

1Note that the twist fields T 2
ne

connect nth
e sheet of the Riemann surface (ne + 2)th(T 2

ne
connect nth

e to
(ne − 2)th) sheet of the Riemann surface. This leads to the factorization of the two point function due to
the breaking of ne even sheeted Riemann surface into two ne/2 sheeted Riemann surfaces.
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and B2 = [u3, v3] as depicted in the fig.(7) below. We denote B = B1 ∪ B2 and Ac

describes the rest of the system.

B1

u1 v1

A B2

u2 v2 u3 v3

Figure 7: Schematic of the configuration with single interval A in between two disjoint
intervals B1 and B2

In this case the entanglement negativity is characterized by the six point function of
the twist fields as follows

Tr(ρTAAB)
ne = ⟨Tne(u1)T ne(v1)T ne(u2)Tne(v2)Tne(u3)T ne(v3)⟩ (4.16)

In the limit v1 → u2 and v2 → u3 the configuration in fig.(7) reduced to the one in
fig.(8) and the above six point function reduces to the following four point function

Tr(ρTAAB)
ne =

〈
Tne(u1)T

2
ne
(u2)T 2

ne
(v2)T ne(v3)

〉
(4.17)

For the vacuum state of the CFT1+1 which lives on the complex plane, the above four
point twist correlator has the following form from conformal symmetry [15]

〈
Tne(z1)T

2
ne
(z2)T 2

ne
(z3)T ne(z4)

〉
C =

cnec
2
ne/2

z
2∆ne
14 z

2∆
(2)
ne

23

Fne(x)

x∆
(2)
ne

, x ≡ z12z34
z13z24

, (4.18)

where (z1, z2, z3, z4) = (u1, u2, u3, v3) for the configuration in question. This leads to
the following expression for the entanglement negativity of the mixed state configu-
ration depicted in fig.(8)

E =
c

4
log
( l1 l

2
2 l3

(l1 + l2)(l2 + l3)a2

)
+ g(x) + constant, x =

l1l3
(l1 + l2)(l2 + l3)

(4.19)
where l1 = |u1 − u2|, l2 = |u2 − v2| and l3 = |v2 − v3| are the lengths of the intervals
B1, A and B2 respectively. The function g(x) and the constant are non universal and
depend on the full operator content of the theory. However the end point values of
the function g(x) may be fixed to be g(1) = 0 and g(0) = const as described in [15].

B1

u1

A B2

u2 v2 v3

Figure 8: Schematic of the configuration in the limit the two intervals B1 and B2 become
adjacent to A
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Interestingly, observe that in the limit l1, l3 >> l2, i.e as the cross ratio x → 1, the
tripartite system involving A,B and the rest of the system reduces to the bipartite
system A∪Ac. Note that this limit is equivalent to the bipartite limit B → Ac leading
to (A ∪ B)c → ∅. Hence in this limit, the result given by eq.(4.19) reduces to the
following

E ≈ c

2
log
( l2
a

)
+ constant. (4.20)

This expression matches exactly with the entanglement negativity of the bipartite
pure vacuum state of the CFT1+1 given in eq.(4.15). This is expected as in the
bipartite limit B → Ac, the mixed state density matrix ρA∪B reduces to the pure
vacuum state ρA∪Ac = |0⟩ ⟨0| for the case when the full system A∪Ac is described by
the vacuum state of the CFT1+1.

Similarly, as described in [15], the entanglement negativity of the finite temperature
mixed state in the bipartite limit is described through the four point twist correlator
as follows

E = lim
L→∞

lim
ne→1

log
[〈
Tne(−L)T

2
ne
(−l)T 2

ne
(0)T ne(L)

〉
β

]
, (4.21)

Once again, the full tripartite system depicted in fig(8), reduces to the bipartite
system A ∪ Ac in the limit B → Ac (L → ∞), with the coordinates u2 = −L and
v3 = L in eq.(4.17). where the subscript β indicates that the correlation function has
to be evaluated on a cylinder, v2 = u1 = ℓ and v1 = u3 = 0. Note that the order of
the limits is significant to obtain the correct finite temperature negativity, and unlike
the zero temperature case discussed previously, the full system A ∪Ac in this case is
described by the mixed state thermal density matrix ρA∪Ac = e−βH .

As described by eq.(4.21), the replica limit ne → 1 has to be imposed prior to the
bipartite limit denoted by L→ ∞. The four point function of the primary operators is
fixed only up to a function of a cross ratios and therefore the entanglement negativity
given by eq.(4.21) leads to the following expression

E =
c

2
log

[
β

πa
sinh

(
πl

β

)]
− πcl

2β
+ g(e−2πl/β) + constant. (4.22)

The non universal function g(e−2πl/β) and the constant in the above expression depend
on the full operator content of the theory. Its values may be fixed only at the end
points (x = 0 and x = 1). Interestingly the above expression may be expressed as
follows

E =
3

2
[SA − SthA ] + g(e−2πl/β) + constant, (4.23)

where SA = c
3 log

[
β
πa sinh

(
πl
β

)]
and SthA = πcl

3β corresponds to the entanglement
entropy and the thermal entropy of the subsystem-A respectively. It is clear from the
above expression that the entanglement negativity eliminates the thermal contribution
and hence describes the upper bound on the distillable entanglement in a mixed state.
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5 Reflected Entropy in Quantum Field Theories

Having discussed the replica technique to compute entanglement entropy in quantum
field theories, we now proceed to describe similar techniques to compute other mea-
sures. We begin by describing the replica technique for reflected entropy as described
in [4].

5.1 Replica Technique: Renyi Reflected Entropy

Figure 9: Picture credits [16]

Consider ρmAB

ρmAB :=
∑
a

pma |ϕa⟩ ⟨ϕa|

=
∑
a,i,j

pma

√
lial

j
a |ia⟩A |ia⟩B ⟨ja|A ⟨ja|B

This leads to a generalization of the canonically purified state which is as follows

| ρm/2AB

〉
:=
∑
a,i,j

pm/2a

√
lial

j
a |ia⟩A |ia⟩B |ja⟩A⋆ |ja⟩B⋆

|ψm⟩ :=
1√

Tr ρmAB

∣∣∣ρm/2AB

〉
where |ψm⟩ is introduced for proper normalization i.e

TrA⋆B⋆

(
|ψm⟩ ⟨ψm|

)
=

ρmAB
Tr ρmAB
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The Renyi reflected entropy is defined as

Sn (AA
⋆)ψm

:=
1

1− n
log TrAA∗

(
ρ
(m)
AA∗

)n
ρ
(m)
AA∗ := TrBB∗ |ψm⟩ ⟨ψm|

This could be re-expressed interms of partition function Zn,m of mn sheeted Riemann
surface which is as follow

S
(me,n)
R (AB) = Sn (AA

⋆)ψme
=

1

1− n
log

Zn,me

(Z1,me)
n

where

Zn,me := TrAA∗

(
TrBB∗

∣∣∣ρme/2
AB

〉〈
ρ
me/2
AB

∣∣∣)n
Note thatn ∈ Z+and me ∈ 2Z+ such me/2 is a positive integer. In the limit m = 1

and n = 1 the above defined Renyi reflected entropy goes to the reflected entropy

S (AA⋆) = lim
n,me→1

1

1− n
log

Zn,m
(Z1,m)

n

Figure 10: Picture credits [16]
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Figure 11: Picture credits [16]

For the case of two disjoint intervals

Sn(AA
⋆)ψm =

1

1− n
log

⟨σgA(x1)σg−1
A
(x2)σgB (x3)σg−1

B
(x4)⟩CFT⊗mn

(⟨σgm(x1)σg−1
m
(x2)σgm(x3)σg−1

m
(x4)⟩CFT⊗m)n

Twist operators are defined as follows

σgB = σ⊗nm , σg−1
B

= σ̄⊗nm , σgA = σ′⊗nm , σg−1
A

= σ̄′⊗nm , σg−1
A gB

= σ(0)n ⊗ σ̄(m/2)n

The conformal block expansion for the four point correlation function is given by〈
σgA (x1)σg−1

A
(x2)σgB (x3)σg−1

B
(x4)

〉
CFT⊗mn

=
1

(x4 − x1)
2(h+h̄) (x3 − x2)

2(h+h̄)

∑
p

C2
ABpF (mnc, h, hp, 1− z)F

(
mnc, h̄, h̄p, 1− z̄

)
One may compute the dominant block in the limit

mnc→ ∞, ϵ :=
6h

mnc
and ϵp :=

6hp
mnc

fixed

In the above limit and in the channel z → 1 i.e when the intervals are close by

SR(A : B) ∼ c

3
log

[
1 +

√
1− z

1−
√
1− z

]
In the other channel z → 0 the reflected entropy vanishes in the leading large central
charge limit.
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6 Holographic Entanglement Entropy

When Ryu-Takayanagi originally proposed their conjecture [10, 17], their motivation
came from two different directions. Firstly, there were estimations which suggested
that the entanglement entropy of a region A in a d-dimensional QFT has the coefficient
of the leading divergent term proportional to the area of the boundary region-∂A that
subsystem-A shares with the rest of the system

SA = γ
Area(∂A)

ad−1
+ .. (6.1)

where a is the UV cut-off of the field theory with the understanding that the maxi-
mum contribution comes from the entanglement of modes that are near the boundary
between A and Ac and therefore proprtional to area-A. The similarity between this
and the Bekenstein-Hawking formula for the black hole entropy was one of the prime
motivations

SBH =
A

4Gd+1
N

. (6.2)

A stronger motivation comes from AdS3/CFT2 where one knows that the two point
correlation function of the local operators in the dual CFT1+1 with large scaling
dimensions (O[c] in the large-c) is given by the exponential of the geodesic anchored
to the points at which the operators are placed

〈
Tn(u)T̄n(v)

〉
∼ e−∆nLuv (6.3)

which implies that the entanglement entropy of the CFT1+1 may be expressed in
terms of the geodesic length in the corresponding dual AdS spacetime

SA =
LA
4G3

N

(6.4)

6.1 Ryu-Takayanagi proposal

These motivations led to the celebrated Ryu-Takayanagi proposal which states that
the entanglement entropy of the subsystem-A in a d-dimensional conformal field the-
ory is given by the area of the static minimal surface-mA which extends into the bulk
AdSd+1 and is anchored to the subsystem-A

SA =
Area(mA)

4Gd+1
N

(6.5)

In the presence of black holes SA ̸= SB as the dual CFT is in a thermal state, the
geometric manifestation of this fact in terms of RT surfaces is follows. In the figure
above one can see that if we use the RT conjecture as stated above one sees that
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Figure 12: RT surfaces for the subsystems A and B in the presence of a blackhole in the
bulk. Source: Headrick and Takayanagi 2007

there is an ambiguity i.e RT surface for the subsystem B can be chosen either as
the one ending on A (as A and B share boundaries) or the one which goes around
the blackhole. This is resolved by taking the RT surface to be homologous to the
corresponding subsystem which essential means one has to find a region r in the
bulk such that ∂r = A ∪mA (Similarly for computing SB we have to find a region
such that ∂r = B ∪mB) . This discussion can be found in [18] Also this version of
the conjecture is applicable to static spacetimes. A covariant generalization of the
proposal was later proposed by Hubney, Rangamani and Takyanagi in [19]. Assuming
just the AdS/CFT conjecture both of the RT and the HRT proposals have now been
provem [20, 21].

6.1.1 Pure AdS3

As a first check we will compute the entanglement entropy of the Vacuum of the
CFT1+1 using RT formula for its bulk dual which is the pure AdS3 spacetime and
see if it matches with that obtained using the RT conjecture. The metric of the in
Poincare coordinates is given by

ds2 =
R2

z2
(−dt2 + dx2 + dz2) (6.6)

Where z is the inverse radial coordinate with boundary field theory living at z = 0.
(x, t) are the coordinates on the boundary.Since the state is static we are allowed to
take a constant time slice and the codimension-2 surface in AdS3 geometry will be a
space like geodesic which may be found by extremizing the following integral∫

ds =

∫
dz
R

z

√
x′(z)2 + 1 (6.7)
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Note that since the boundary is at z = 0 the geodesic length diverges and needs to be
regulated. This is the bulk manifestation of the fact that the entanglement entropy is
UV divergent and is because of the famous UV-IR connection in AdS/CFT . Therefore
the integral becomes

LA = 2

∫ z=z∗

z=ϵ
dz
R

z

√
x′(z)2 + 1 (6.8)

where z = z∗ is the turning point of the geodesic. The Euler-Lagrange equation in
this case is given by

R2

z2
x′(z)√
x′(z)2 + 1

= const (6.9)

At the turning point z = z∗, dx
dz = 0 this fixes the constant and we get

dx

dz
=

z

(z∗2 − z2)
1
2

(6.10)

Substituting this in eq.(6.8) we get the geodesic length to be

LA = 2

∫ z=z∗

z=ϵ
dz
R

z

z∗

(z∗2 − z2)
1
2

(6.11)

Performing the integral and Substituting it in the expression for holographic entan-
glement entropy given by the RT conjecture

SA =
R

2GN
log[

ℓ

ϵ
] (6.12)

Identifying the ϵ as the UV cut off of the field theory and using the Brown-Hennaux
formula c = 3R

2G
(3)
N

, one obtains th exact match with the CFT1+1 result

SA =
c

3
log[

ℓ

a
] (6.13)
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6.1.2 Euclidean BTZ

According to AdS/CFT correspondence the finite temperature CFT1+1 is dual to
the Euclidean BTZ black hole. We will compute the geodesic in this background and
compare it with that of the CFT result discussed in the first lecture. The metric of
the Euclidean BTZ black hole is given by

ds2 =
(r2 − r2h)d

R2
τ2E +

R2

(r2 − r2h)
dr2 + r2dϕ2, (6.14)

One may make the following coordinate transformation r = rh cosh ρ, τE = R
rh
θ, ϕ =

R
rh
t to map this Euclidean AdS3 in the global coordinates

ds2 = R2(dρ2 + cosh2 ρdt2 + sinh2 ρdθ2). (6.15)

This is done so as to evaluate the geodesic length utilizing the equivalence between
Euclidean AdS3 at temperature T = β−1 and the Euclidean BTZ black hole at tem-
perature 1/T . The length of the RT geodesic is given by

LA = 2R ln

[
βH
πa

sinh[
πl

βH
]

]
, (6.16)

According the AdS/CFT dictionary the Hawking temperature of the black hole(TH =

β−1
H ) is indentified with temperature of the CFT (T = β−1). Therefore the entangle-

ment entropy computed using the RT formula once again matches exactly with that
of the CFT

SA =
c

3
ln

[
β

πa
sinh[

πl

β
]

]
(6.17)
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7 Reflected Entropy

Reasoning behind the holographic proposal

• Consider the entanglement wedge of the subsystem AB denoted as r(AB) such
that ∂r(AB) = AB ∪m(AB) where m(AB) is the Ryu-Takayanagi surface.

• Consider for example A and B as two disjoint regions in the dual CFT living in
the assymptotic boundary of the bulk AdS space time. The density matrix ρAB
corresponding to the region AB in general is a mixed state.

• The canonical purification of such a boundary region AB is equivalent to taking
two copies of the entanglement wedges which are glued along the Ryu-Takayanagi
surfaces such that the resulting manifold rr⋆(AB) = r(AB) ∪ r⋆(AB). This is
the dual of the state |√ρAB⟩. (This is a valid procedure to do. See [22]

• In this new manifold we can now define the entanglement wedge for the subsys-
tem AA∗ r(AA∗) such that ∂r(AA∗) = AA∗ ∪m(AA∗) .

• Consider splitting the RT surface m(AB) into m(AB) = ΓA ∪ ΓB and finding a
minimal surface m (ΓAA) inside r(AB) that ends on ∂ (ΓAA) and then

m (AA⋆) = m
(
Γmin
A A

)
∪m

(
Γmin
A⋆ A⋆

)
(7.1)

where Γmin
A is the minimal splitting surface. Hence

SR(A : B) =
EW (A : B)

2GN
(7.2)
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7.1 Holographic Markov Gap

• The authors in [7] begin the holographic description of the Markov gap by con-
sidering the example of the two disjoint intervals in CFT2 dual to Vacuum AdS3.

Figure 14: Picture credits [7]

• The black curvy lines around the RT surfaces (in blue) corresponding to the
subsystem AB contain regions which are in the entanglement wedge of ABB∗

but not in AB or BB∗.

• Another example involves the canonical purification of the two legs of a three
boundary wormhole. Once again the black curvy lines around the RT surfaces
(in blue) corresponding to the subsystem AB contain regions which are in the
entanglement wedge of ABB∗ but not in AB or BB∗.

Figure 15: Picture credits [7]

• This implies that in holographic sysytems perfect quantum Markov recoveries
are excluded and hence there exist non-trivial Markov gap.
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7.2 Geometrizing the Markov gap

For any bipartite boundary state ρAB with a semiclassical dual, one can define a
special surface homologous to A by taking the union of the entanglement wedge cross-
section EW (A : B) together with the portions of the RT surface corresponding to AB
that lie between EW (A : B) and A. The surface thus constructed is homologous
to A. The authors call this surface the KRT surface KRT(A) — for “kinked Ryu-
Takayanagi,” because the surface will have right-angled kinks where EW (A : B) meets
the RT surface of AB.

Figure 16: Picture credits [7]

SR(A : B)− I(A : B) =
2 area(EW (A : B))− area(RT(A))− area(RT(B)) + area(RT(AB))

4GN

=
area(KRT(A))− area(RT(A))

4GN
+

area(KRT(B))− area(RT(B))

4GN

where we have used

2 area (EW (A : B)) + RT(AB) = area(KRT(A)) + area(KRT(B))

The authors in [7] then utilizing some geometric relations in hyperbolic 2 manifolds
to demonstrate that in AdS3

SR(A : B)− I(A : B) ≥ log(2)ℓAdS

2GN
× (# of cross-section boundaries ) + o

(
1

GN

)

8 Entanglement Negativity

As discussed earlier, a replica technique proposed in [14, 15], was utilized to com-
pute the entanglement negativity for various pure and mixed state configurations of
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a CFT2. Following this, a holographic construction was advanced in [23–25] to deter-
mine the entanglement negativity of a holographic CFT2 through a specific algebraic
sum of the areas of extremal surfaces (lengths of geodesics in the dual bulk AdS3).
For example, the holographic entanglement negativity of two disjoint intervals A and
B in proximity is given by [25]

E =
3

16GN
[LA∪C + LB∪C − LA∪B∪C − LC ] . (8.1)

=
3

4
[S(A ∪ C) + S(B ∪ C)− S(A ∪B ∪ C)− S(C)] (8.2)

where C denotes the interval sandwiched between A and B, LY denotes the length of
a geodesic anchored on the subsystem Y , and GN corresponds to the 3 dimensional
gravitational constant. Note that in order to arrive at the last expression from the
eq.(8.1), we have used the Ryu-Takayanagi proposal for holographic entanglement
entropy which for a subsystem-Y is given as [10, 17, 19]

SY =
LY
4GN

(8.3)

The numerical coefficient 3
16GN

in front of the area terms in eq.(8.1) has an important
physical significance. In this context, it is crucial to recall that the holographic dual
of the Renyi entropy of a subsystem-A in a CFT is given by the area of a cosmic
brane with a tension in the dual bulk AdS spacetime [26]. This is expressed as follows

n2
∂

∂n

(
n− 1

n
S(n)(A)

)
=
Area ( cosmic brane n)

4GN

n2
∂

∂n

(
n− 1

n
A(n)

)
= Area ( cosmic brane n) (8.4)

where S(n)(A) is the nth Renyi entanglement entropy for subsystem-A and the sub-
script n the RHS indicates that the tension of the cosmic brane depends on the replica
index. Note that A(n) is related to S(n) as follows

S(n) =
A(n)

4GN
(8.5)

We will now utilize the following result which states that the quantity A(n) related to
the area of a back reacting cosmic brane is proportional to that of the corresponding
cosmic brane with vanishing backreaction (A) as described in [26–28]

lim
n→1/2

A(n) = X hol
d A. (8.6)

Observe that Xd in the above equation is a dimension dependent constant and the sub-
script d denotes the dimension of the holographic CFTd. Note that the above relation
holds only for configurations involving entangling surfaces with spherical symmetry
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and Xd is explicitly known to be of the following form

Xd =
1

2
xd−2
d

(
1 + x2d

)
− 1 (8.7)

xd =
2

d

(
1 +

√
1− d

2
+
d2

4

)
. (8.8)

In the AdS3/CFT2 scenario this constant may be determined from the above expres-
sions to be X2 =

3
2 . From the above discussion, it is clear that we may re-express the

conjecture given in eq.(8.1) [25], as follows

E =
X2

8GN
[LA∪C + LB∪C − LA∪B∪C − LC ]

We now utilize the result given in eq.(8.6), in the AdS3/CFT2 scenario i.e L(1/2) =

χ2L, to rewrite the above expression as follows

E =
1

8GN

[
L(1/2)
A∪C + L(1/2)

B∪C − L(1/2)
A∪B∪C − L(1/2)

C

]
(8.9)

=
1

2

[
S(1/2)(A ∪ C) + S(1/2)(B ∪ C)− S(1/2)(A ∪B ∪ C)− S(1/2)(C)

]
, (8.10)

where, S(1/2)(Y ) in the above equation denotes the Renyi entropy of order half for the
subsystem Y . In order to arrive at the last line of the above equation we have used
eq.(8.5). Following the same procedure as above we may re-express the holographic
conjecture for the entanglement negativity of the adjacent intervals in [24] as

E =
1

2

[
S(1/2)(A) + S(1/2)(B)− S(1/2)(A ∪B)

]
. (8.11)

Similarly, the holographic conjecture for the entanglement negativity of a single in-
terval [23] may be expressed as follows

E = lim
B1∪B2→Ac

1

2

[
2S(1/2)(A) + S(1/2)(B1) + S(1/2)(B2)− S(1/2)(A ∪B1)− S(1/2)(A ∪B2)

]
(8.12)

Inspired by the above construction, we will propose below the island contribution to
the entanglement negativity for various pure and mixed state configurations in terms
of a combination of the generalized Renyi entropies of order half. However, before
we discuss our island proposals, we briefly review the generalized Renyi entanglement
entropy and comment on the analytic continuation to n = 1

2 .

Quite interestingly, when ABC is a tripartite system in pure state the disjoint, ad-
jacent intervals and single interval all of the above proposals can be unified into one
given by (see [29] for details)

E =
1

2
I(1/2)(A : B) (8.13)
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where I(1/2) is the mutual information of order half given as follows

I(1/2)(A : B) = S(1/2)(A) + S(1/2)(B)− S(1/2)(A ∪B). (8.14)

For a certain class of holographic states namely the fixed area states, the above
simplifies as these states have flat entanglement spectrum ( which means any Renyi
entropy is same as its entanglement entropy)

E =
1

2
I(A : B) (8.15)

For these fixed area recently it has been proven in [30] that the holographic entangle-
ment negativity is indeed given by the above result. The proof interestingly involves
a particular replica symmetry breaking saddle in the bulk.

There is an alternative proposal for entanglement negativity which says that for holo-
graphic states it is given by half of the Renyi reflected entropy of order half [31, 32]

E =
1

2
S
(1/2)
R (A : B) (8.16)

Since. we know that the reflected entropy is given by entanglement wedge cross
section, the above equation reduces to

E = EW (1/2)(A : B) (8.17)

EW (1/2) corresponds to the area of back reacted entanglement wedge cross section
dual to the Renyi reflected entropy of order half.
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